
COP 3223: C Programming (Pointers – Part 1) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Pointers In C – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Pointers – Part 1) Page 2 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• We’ve been using pointers in C for some time now. Recall that

every array is referenced indirectly through a pointer to its first

element. We’ve dealt extensively with pointers to strings

(arrays of characters). Program 5 utilized a fair amount of

explicit pointers being passed to functions.

• Now we want to take a closer look at pointer operations in

general.

• In C, a pointer can be declared to any data type as well as any

structure (we’ll see these soon).

• Most modern computers are said to be byte addressable, which

means that every byte in the computer’s memory has a specific

address. If the computer has n bytes in its memory, then the

addresses of those bytes range from 0 to n-1.

COP 3223: C Programming (Pointers – Part 1) Page 3 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• Every C program that you write contains both object code

(machine instructions which correspond to the statements in the

original source code) and data (the variables in the original

source program).

• Each variable in the source program occupies one or more bytes

of memory, depending on its data type.

– Recall that the char type requires 1 byte, the int type requires

2 bytes, and the long type requires 4 bytes.

• For every variable, no matter its type, the address of the first

byte it occupies in memory is said to be the address of the

variable.

COP 3223: C Programming (Pointers – Part 1) Page 4 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• For example, suppose we have int myNum = 25169;

int *ptr;

*ptr = &myNum;

The decimal value 25169 represented in binary is: 110001001010001

If we look at part of the memory of our computer and supposing that myNum

is stored at address 4020, then we have the following configuration:

4018

4019

01100010

01010001

4020

4021

4022

4023

Memory

addresses

Location of variable myNum.

This variable occupies 2

bytes of memory starting at
address 4020.

Address of variable
myNum is 4020. So

ptr = 4020.

COP 3223: C Programming (Pointers – Part 1) Page 5 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• The type of object that a pointer references (points to) in C is

called the referenced type. C places no basic restrictions on the

referenced type. It is even possible to have a pointer point to

another pointer (this would add a second level of indirection).

• C provides two operators specifically designed for use with

pointers:

• The address operator (&), is used to find the address of a variable.
If x is a variable, then &x is the address of x in memory.

• The indirection operator (*), is used to gain access to the object
that a pointer references. If p is a pointer variable, then *p

represents the object to which p currently points.

COP 3223: C Programming (Pointers – Part 1) Page 6 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• Recall that declaring a pointer variable does not cause it to refer to

any specific location in memory.

int *ptr; //ptr can reference an integer

//value but currently points nowhere

• It is crucial to initialize any pointer variable before it is used. A

common technique is to simply assign it the address of some

variable using the address operator (&).

int alpha, *ptr;

ptr = α //assigns address of alpha

//to ptr

ptr alpha?This two line declaration and assignment

can be combined into the single line:
int alpha, *ptr = α

COP 3223: C Programming (Pointers – Part 1) Page 7 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• Once a pointer variable is referencing some object, the indirection

operator (*) can be used to access what is stored in the object.

• If we again have:

int alpha, ptr = α

and we make the following assignment:

alpha = 27;

then we can print the value stored in the variable alpha using the

pointer variable ptr as follows: printf(“%d\n”, *ptr);

The output would be: 27

ptr alpha27

COP 3223: C Programming (Pointers – Part 1) Page 8 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• If it helps you to understand the concept better, you can think of

the indirection operator as the inverse of the address operator.

• Applying & to a variable produces a pointer to the variable;

applying * to the pointer takes you back to the original variable.

j = *&i; //same as j = i

• As long as a pointer references some object, that pointer is said to

be an alias for the object. In other words, the object can be

referred to in two different ways, either through the variable name

or through the pointer referencing the object.

COP 3223: C Programming (Pointers – Part 1) Page 9 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Pointers – Part 1) Page 10 © Dr. Mark J. Llewellyn

Pointers In C – More Details

2293568

2293572

62293572alpha

2293568

2293570

2293574

2293566

2293564

2293562

2293560

ptr

ptrToPtr

Representation of

the memory

configuration of the

example

Memory

address

Memory

locations

Variables

COP 3223: C Programming (Pointers – Part 1) Page 11 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• C allows the use of the assignment operator to copy pointer values,

provided that they reference the same type of object.

• If we have:

i, j, *ptr1, *ptr2;

then the statement

ptr1 = &i; is an example of pointer assignment; the address

of i is copied into ptr1.

Here is another example of pointer assignment:

ptr2 = ptr1;

This statement copies the contents of ptr1 (the address of i) into

ptr2. The effect of this is to make ptr1 and ptr2 reference the

same object, in this case the address containing the value of variable
i.

COP 3223: C Programming (Pointers – Part 1) Page 12 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• Continuing with the example from the previous page, we how have

the following situation:

• Both ptr1 and ptr2 reference the address of variable i, so we can

change the value of i by assigning a new value through either ptr1

or ptr2 (or i).

• If, for example, we do: *ptr1 = 14;, then we’ll have the

following situation:

i

ptr1

ptr2

?

ptr1

ptr2

14 i

COP 3223: C Programming (Pointers – Part 1) Page 13 © Dr. Mark J. Llewellyn

Pointers In C – More Details

• Continuing with the example from the previous page, if, for example,

we do: *ptr2 = 36;, then we’ll have the following situation:

• All of the following statements will print the same result, namely 36.

printf(“The value referenced by ptr1 is %d\n”, *ptr1);

printf(“The value referenced by ptr2 is %d\n”, *ptr2);

printf(“The value of i is %d\n”, i);

printf(“The value of **&ptr1 is %d\n”, **&ptr1);

i

ptr1

ptr2

36

i

COP 3223: C Programming (Pointers – Part 1) Page 14 © Dr. Mark J. Llewellyn

* * CAUTION * * *

Be careful not to confuse statements like ptr1 = ptr2 with *ptr1 = *ptr2.

The first statement is a pointer assignment, it assigns the value (an address) of ptr2 to the

value (an address) of ptr1.

The second statement above, is a normal assignment operation which sets the value of the
object referenced by ptr1 to have the same value as the object referenced by ptr2.

ptr1

ptr2

36 x

y22

Before statement: ptr1 = ptr2

ptr1

ptr2

36 x

y22

After statement: ptr1 = ptr2

ptr1

ptr2

36 x

y22

Before statement: *ptr1 = *ptr2

ptr1

ptr2

22 x

y22

After statement: *ptr1 = *ptr2

COP 3223: C Programming (Pointers – Part 1) Page 15 © Dr. Mark J. Llewellyn

Practice Problems

1. Write a program that will read a double from

the keyboard and then break the number into its

integer part and fractional part and store the

integer and fractional part in locations

referenced by pointers. Then using the pointers

will reconstruct and print out the complete

value.

Example: user enters 42.789. Break into 42 and

789 stored in two different locations referenced by

pointers. Then read the values at those locations

and print the value 42.789.

